COURSE DESCRIPTION

HELLENIC REPUBLIC,

NATIONAL
AND KAPODISTRIAN

UNIVERSITY OF ATHENS,

DEPARTMENT OF BIOLOGY

2019

Athens

International

Master's

Programme in

Neurosciences

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences


Department of Biology

CONTENTS

INTRODUCTION	3
DESCRPTION OF THE COURSES OF THE INTERNATIONAL MASTER'S PROGRAMME IN NEUROSCIENCE	5
FIRST SEMESTER	6
DEVELOPMENTAL NEUROSCIENCE	7
GROSS AND MICROSCOPIC ANATOMY OF THE NERVOUS SYSTEM	9
Co-Coordinators	9
CELLULAR AND MOLECULAR NEUROSCIENCE	13
Titles of the lectures and the names of the lecturers	14
TECHNICAL COURSES	16
Titles of the lectures and the names of the lecturers	17
Titles of the lectures and the names of the lecturers	19
Titles of the lectures and the names of the lecturers	22
Titles of the lectures and the names of the lecturers	24
LAB ROTATION	28
SECOND SEMESTER	29
NEUROBIOLOGICAL BASIS OF DISEASES OF THE NERVOUS SYSTEM	30
NEUROPHARMACOLOGY	32
BEHAVIORAL NEUROSCIENCE IN ANIMALS	35
NEUROIMMUNOLOGY	37
NEUROENDOCRINOLOGY	41
ELECTROPHYSIOLOGY	43
COMPUTATIONAL NEUROSCIENCE	45
LABORATORY ROTATION	47
RESEARCH THESIS PROJECT	47

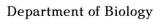
National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

INTRODUCTION

The purpose of the postgraduate program «Athens International Master's Programme in Neurosciences» is to provide high quality graduate education at the Master of Sciences (M.Sc.) level in the scientific field of neuroscience.

The postgraduate program of studies leads In the award of a "Postgraduate Specialisation degree" in Neurosciences (Master of in Neurosciences) after full and successful completion of studies based on the curriculum


The "Athens International Master's Programme in Neuroscience" is operated jointly by the:

Department of Biology of the National and Kapodistrian University of Athens		
Department of Nursing of the National and Kapodistrian University of Athens		
Department of Dentistry of the National and Kapodistrian University of Athens		
School of Medicine of the National and Kapodistrian University of Athens		
Foundation for Biomedical Research of the Academy of Athens		
The National Center for Scientific Research "Demokritos",		
Hellenic Pasteur Institute		
Biomedical Sciences Research Center "Alexander Fleming"		

The Goddess of Research

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

National and Kapodistrian University of Athens

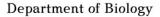
Department of Biology

Athens International Master's Programme in Neurosciences

DESCRPTION OF THE COURSES OF THE INTERNATIONAL MASTER'S PROGRAMME IN NEUROSCIENCE

National and Kapodistrian University of Athens

Department of Biology



Athens International Master's Programme in Neurosciences

FIRST SEMESTER

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

DEVELOPMENTAL NEUROSCIENCE

Co-Coordinators

Rebecca Matsas, Research Director, Head of Department of Neurobiology, Hellenic Pasteur Institute

Panagiotis Politis, Principal Investigator, Biomedical Research Foundation, Academy of Athens

Teaching hours and weekly schedule

This is a 1st semester about 3 weeks course that corresponds to 4 ECTs and 35 total hours of teaching including student presentations.

The course will take place in October-November and the weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This is an intensive three-week course focused on cellular, molecular and biochemical aspects of developmental neurobiology and neuroscience. The courses will include lectures by established researchers with diverse and complementary academic profiles. The main emphasis of the course will be on the complex cellular events and signaling cascades that occur during embryogenesis that lead to generation of the nervous system. Our goal is to provide a systematic introduction to the molecular mechanisms that control cell fate specification, differentiation, and function of neural cells during mammalian brain development. An additional aim is to discuss nervous system plasticity in the adult brain and particularly how the presence of adult neural stem cells may contribute to brain repair strategies. Special attention will be given to describe the key methodological advances and research tools, developed in the last few years, which have changed our view about the formation of the mammalian brain. Therefore, this course will provide a contemporary overview of neural development for post-graduate students with some background in cell biology.

Course Overview

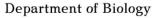
This course aims: a) to introduce participants to the major issues of developmental neuroscience, b) to familiarize students with the wide range of research approaches, tools and methodology currently used to study the development of the mammalian nervous system, c) to discuss the concept of neural stem cells during development and in the adult and d) to encourage students to develop the skills required for a meaningful appreciation of experimental strategies and research articles.

This course will cover recent advances in understanding the molecular and cellular events underlying cell fate specification and differentiation, migration, axon guidance, synapse formation, the critical role of neurotrophic factors, and cell death as a developmental

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology


process. Pathologies arising from failures of these processes will be discussed. In particular, the lectures will cover the following general subjects:

- Neural Induction
- Neural tube formation and patterning
- Cortical & Cerebellar Neurogenesis
- Regulatory mechanisms of cell cycle progression/exit
- Neuronal migration and differentiation
- Axon Guidance & Adhesion Molecules
- Trophic factors and programmed cell death during nervous system development
- Synapses: formation, function and plasticity
- Development of neural circuits
- Development of the neuroimmune system
- Gliogenesis, myelination, remyelination
- Neural stem cells, adult neurogenesis & neuroregeneration
- Advanced Methods in Developmental & Regenerative Neurobiology

A/A	Developmental Neuroscience	Lecturer
1	Neural Induction / Neural tube formation and	Panos Politis
	patterning	
2	Cortical & Cerebellar Neurogenesis: cell cycle	Rebecca Matsas
	progression/exit, migration and differentiation	
3	Axon Guidance & Adhesion Molecules	Maria Gaitanou
4	Trophic factors / programmed cell death during	Nondas Doxakis
	nervous system development	
5	Synapses: formation, function and plasticity.	Nondas
	Development of neural circuits	Doxakis/Laskaro
		Zagoraiou
6	Development of the neuroimmune system	Era Taoufik
7	Gliogenesis, myelination, remyelination	Florentia
		Papastefanaki
8	Neural stem cells, adult neurogenesis &	Rebecca Matsas
	neuroregeneration	
9	Advanced Methods in Developmental & Regenerative	Panos Politis
	Neurobiology	
<mark>10</mark>	XXXX	Denaxa Myrto

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

GROSS AND MICROSCOPIC ANATOMY OF THE NERVOUS SYSTEM Co-Coordinators

Elizabeth O. Johnson, Professor of Anatomy **Maria Panayotacopoulou**, Professor of Neurobiology

Teaching hours and weekly schedule

This a 1st semester about 3 weeks course that corresponds to 3,5 ECTs and 31 total hours of teaching including student presentations.

The course will take place in November-December and the weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This is an intensive three-week course focused on neuroanatomy that includes lectures and laboratory sessions. All material will focus primarily on learning the structure of the nervous system with related focus on function for general neuroscientists. Special attention will be given to chemical neuroanatomy in order to identify and describe the neurotransmitter systems of the brain and their connections. The goal of this intensive course is that students become well versed in the structure and function of the nervous system in health and disease. Hands on laboratory sessions will allow students to learn through direct experience.

Course Overview

Interdisciplinary study of the nervous system, with the overarching theme that nervous system disorders can be understood in terms of neuroanatomical mechanisms. The course covers general principles of the development, connectivity, neurotransmitter and receptor systems, blood supply, central nuclei and tracts of the central nervous system.

- Major topographical features of the brain
- Describe the major anatomical subdivisions and functions of cerebral cortical systems
- Major interrelationships between primary brain structures
- Localize and identify brainstem nuclei
- Localize and identify brainstem tracts
- Localize and identify major somatomotor systems
- Localize and identify major somatosensory systems
- Localize and identify central sensory systems (visual, auditory and vestibular pathways)
- Localize and understand cranial nerves
- Understand and localize hypothalamic subnuclei and autonomic systems
- Understand and localize the limbic system and diencephalon

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

- Understand and localize the basal ganglia
- Localize and identify the blood supply of the brain, the ventricular system and meninges
- Understand the basic immunohistochemical methodology that permits the localization of neurons on the basis of their neurotransmitter expression
- Understand the basic concept of in situ hybridization for the study of gene expression in chemically identified neurons that permits the molecular investigation of the nervous system in health and disease.

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. Describe and identify the components of the nervous system and the sensory organs.
- 2. Identify the structures of the brain, spinal cord and peripheral nervous system.
- 3. Describe the relationship of the structure of the nervous system to its functions: movement, sensory systems- basic functions of a living organism.
- 4. Describe and identify the structure and functions of the autonomic nervous system and the cranial nerves.
- 5. Relate the chemical and molecular anatomy of the nervous system to clinical syndromes and diseases.

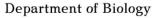
National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

A/A	Gross and Microscopic Anatomy of the	Lecturer	
	Nervous System		
1	Overview of the Human Brain-structure	Elizabeth Johnson	
2	Brain Coverings: Meninges, Vasculature,	Theodore Troupis/Spiros	
	Ventricles, CSF and Blood Brain Bariers	Georgopoulos	
	(Emphasis on the latter)		
3	Prefrontal and Frontal Cortex-functional	Sokratis Papageorgiou	
	mapping		
4	Parietal, Temporal and Occipital Cortex-	Elizabeth Johnson	
	functional mapping		
5	White matter tractography	Fotini Christidis	
6	Language centers	Constantinos Potagas	
7	Structure and function of the limbic system	Dimitios Mytilinaios/ Dimitris	
		Arvanitis	
8	Hypothalamus and Autonomic Nervous	Maria Panayotacopoulou,	
	System	Panagiotis Kokotis	
9	Basal Ganglia and Diencephalon	Maria Xilouri, Dimitrios Mytilinaios	
10	Brain Stem and Cerebellum	Elizabeth Johnson, Dimitios	
		Mytilinaios	
11	Spinal Cord and pathways	Nicolaos Karandreas	
12	Motor systems and pathways and and	Nicolaos Smyrnis	
	control of voluntary movements		
13	Sensory Systems and pathways-Vision and	Irini Skaliora, Konstantinos	
	Visual Cortex	Moutousis	
14	Sensory Systems and pathways-Hearing	Dimitris Anastasopoulos	
	and Balance		
15	Sensory systems and pathways-smell and	Dimitris Anastasopoulos	
	taste		
16	Sensory systems and pathways-touch and	Panagiotis Kokotis	
	pain		
17	Sensory systems disorders	Evagelos Anagnostou	
18	Cranial Nerves	Elizabeth Johnson/ Maria Piagkou	
19	Chemical and Molecular Neuroanatomy /	Maria Panayotacopoulou,	
	Slide demonstration	Margarita Chrysanthou, Marianna	
		Pagida	
20	Comparative Neuroanatomy (Rodent,	Ismini Papageorgiou, George	
	Porcine, primate) and atlases	Paxinos	

National and Kapodistrian University of Athens



Athens International Master's Programme in Neurosciences

Department of Biology

21	Structural and Functional Neuroplasticity	Paul Lucassen (University of
		Amsterdam)
22	Brain Banking	Efstratios Patsouris
23	Lab1: Introduction to	Dionysis Pandis (EEG lab Eginition
	Electroencephalography(following or	Hospital)
	before? the lecture on language centers)	
24	Lab2: Introduction to Electromyography	Nikolaos Karandreas (EMG lab
	and Transcranial Magnetic Stimulation	Eginition Hospital)
	(following spinal cord and pathways)	
25	Lab 3: Gross and microscopic anatomy of	Elizabeth Johnson,
	the human brain	Maria Panayotacopoulou
26	Lab 4: Gross and microscopic anatomy of	Antonis Stamatakis,
	the rat brain	Elizabeth Johnson,
		Maria Panayotacopoulou
27	Lab 5: Electron microscopy lab	Margarita Chrysanthou,
		Ismini Kloukina (EM lab Eginition
		Hospital)
28	Lab5: Sleep lab (following Hypothalamus or	Dimitris Dikeos (Sleep lab Eginition
	following sleep and circadian rythms of	Hospital)
	NEUROENDOCRINOLOGY session)	

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

CELLULAR AND MOLECULAR NEUROSCIENCE

Co-coordinators

Dimitra Mangoura, Professor-Investigator A, Biomedical Research Foundation of the Academy of Athens, and

Zafiroula–Iro Georgoussi, Research Director, National Center for Scientific Research "Demokritos", Athens

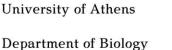
Teaching hours and weekly schedule

This a 1st semester about 3.5 weeks course that corresponds to 5,5 ECTs and 49 total hours of teaching including student presentations.

The course will take place in October-November and the weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This course is designed to introduce graduate students to major processes, principles, and mechanisms associated with Cellular and Molecular Neurobiology. Therefore the material will range from the mechanistic details of neuronal signaling and cellular function to how such properties utilized during normal brain function and neuropathology or substance abuse. The Course involves a series of overview lectures by leading researchers in the field, a total of fifteen Instructors from Greece and across Europe, and opportunities of presenting primary research or literature review papers by students.


More specifically, this Course will include the following major topics: overview of the neuron as the fundamental unit; cell biology of neurons and glia; ion channels and electrical signaling; synaptic transmission, integration, and chemical systems of the brain; molecular properties of neurotransmitters and their receptors; and sensory systems, from transduction to perception. Students will emerge with a great awareness of how individual nerve cells function, and neurons communicate with other cells, and of the ways that neurotransmission can provide insight into basic scientific questions, all in preparation for students own contributions as neuroscientists and biologists.

Course Overview

This is a comprehensive introductory course in Molecular and Cellular Neuroscience. Basic principles of organization and function of the nervous system will be discussed and frequent reference will be made to pathophysiology of neurological and other disorders.

- General principles of Nervous System
- Synaptic Transmission, Neurotransmitters and their Receptors
- Molecular Aspects of Neuronal Cells

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to know the fundamental principles on:

- 1. Neural cell biology
- 2. Synapse formation and neural plasticity
- 3. Intracellular trafficking and cytoskeleton-related processes
- 4. Interconnections to form nerve circuits for the passage of electric signals
- 5. Small molecules coupling to their cognate membrane receptors to regulate intracellular responses and biological outcomes
- 6. Major intracellular signalling pathways
- 7. Molecular biology of the sensory systems
- 8. Energy brain metabolism

A/A	Molecular and cellular neuroscience	Lecturer
	Overview of the Nervous System	
1	Overview of the Nervous System	Mimika Mangoura
2	Cell Membrane Structures and Functions;	Mimika Mangoura
	Intracellular Trafficking and Axonal	
	transport	
3	The Cytoskeleton of Neurons and Glia	Katia Befort
4	Basis of excitability, resting potential	Irini Skaliora
5	Passive and active properties (Action	Christos Konsoulas
	potential, cable theory)	
6	Synapses (NMJ and central) signal	Christos Konsoulas
	integration and processing	
	Cellular Plasticity, LTP/LTD	Irini Skaliora/Christos
		Comsoulas
7	Astrocytes and Microglia (Neuron/glia	Ismini papageorgiou
	interactions in network activity shaping	
	Synaptic Transmission, Neurotansmitters	
	and their Receptors	
8	Synaptic Transmission, Neurotransmitters	Zafiroula-Iro Georgoussi
	and their receptors	

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

To the second se	AND CONTRACTOR OF THE CONTRACT	
9	Phosphoinositides- Cyclic Nucleotides in	Zafiroula-Iro
	the Nervous System	Georgoussi/George Leondaritis
10	Neurotransmitters I:Glutamate and GABA	Ada Mitsakou
	and their Receptors	
11	Neurotransmitters II: Acetylcholine	Socrates Tzartos
12	Neurotransmitters III: Catecholamines	Dido Vasilakopoulou
13	Neurotransmitters IV: Purines, peptides	Laskaro Zagoraiou
	and gases	
14	Small molecular weight G-proteins	Mimika Mangoura
15	Ca2+ signaling and Homeostasis	Panagiota Papazafiri
	Lipid neurotransmitters (cannabinoids)	Ismael Galve-Ropeth
	Molecular Biology of Neural Cells	
16	Transcription Factors in the Central	Panagiota Papazafiri /Laskaro
	Nervous System	Zagoraiou
17	Protein synthesis and posttranslational	Mimika Mangoura
	modifications	
18	Energy Metabolism of the Brain	Ralph Dringen
19	Molecular Biology of Vision and Olfaction	Mimika Mangoura
	•	

National and Kapodistrian University of Athens

Department of Biology

Athens International Master's Programme in Neurosciences

TECHNICAL COURSES

It is subdivided into the following parts:

- A) Technical courses I: Methodological approaches in Neuroscience, Statistics (SPSS, R programming, graphpad).
- B) Technical courses II: Molecular Biology-Omics
- C) Technical Courses III: Methodological approaches in Neuroscience, Microscopyneuroimaging
- D) Technical courses VI: Methodological approaches in Neuroscience , Experimental animal models in Neuroscience
- E) Technical courses V: Methodological approaches in Neuroscience, Elements of Bioinformatics (big data bases).

Teaching hours and weekly schedule

This is a 1st semester about 3,5 weeks obligatory course that corresponds to 5 ECTs and 44 total hours of teaching including student presentations.

The course will take place in December January and the weekly schedule includes about 4 hours of teaching per day every afternoon.

A) Technical courses I: Methodological approaches in Neuroscience, Statistics (SPSS, R programming, graphpad).

Co-Coordinators

Katsouyianni Klea, Professor, Scholl of Medicine, National and Kapodistrian University of Athens

Touloumi Giota, Professor, Scholl of Medicine, National and Kapodistrian University of Athens

Description

This 7 hours course is indented to cover the basic statistical principles usually applied in the biological sciences. The goal of the course is to provide the students with the ability to choose and apply the appropriate statistics for their studies.

Course Overview

The course will begin with an analysis of the hypothesis test, a statistical test used to compare two data sets for the purpose of rejecting a null hypothesis and not to indicate the more likely of two hypotheses. The students will also be introduced in the process of randomization, of making something random, for example on how to select a random sample of a population. In addition, the course will provide detailed information on some of the most commonly used distributions and an analysis of the central limit theorem which establishes that the sum of independent random variables tends toward a normal distribution although the original variables may not. Time will be allocated in the presentation of parametric and nonparametric tests and their comparison in order for the

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

students to understand the prerequisites for applying one or the other. Special attention will be given to the multiple comparison problems and means to overcome it. The problem arises from the fact that when you are performing multiple statistical tests a fraction of them is false positives. The application of Linear, Logistic and Cox models will be also presented.

Titles of the lectures and the names of the lecturers

A/A	Technical courses: Methodological approaches in	Lecturer
	Neuroscience, Statistics (SPSS, R programming,	
	graphpad).	
1	Descriptive statistics, Normal and other distributions.	Touloumi Giota
	Hypothesis testing: main principles. Errors. Meaning	
	of statistical significance. Multiple comparisons.	
	Central Limit Theorem	
2	Univariate parametric and non-parametric tests.	Katsouyanni Klea
	Confounding variables: presence and control of	
	confounding effects- randomization.	
3	Multiple linear regression, logistic regression and Cox	Katsouyanni Klea
	proportional hazards models in relation to study	
	design and the distribution of the dependent	
	variable.	

B) Technical courses II: Molecular Biology-Omics

Co-ordinators

George Panayotou, Researcher A'. BSRC Alexander Fleming

Description

These series of lectures will provide

- A) an overview of Next Generation Sequencing (NGS) and the most relevant biomedical NGS applications: Targeted sequencing, Whole-exome sequencing, Whole-genome sequencing, RNA-seq (mRNA-seq, smallRNA-seq, etc., approaches to study RNA structure and RNA-protein interactions), approaches to interrogate the composition and structure of chromatin (ChIP-seq, ATAC-seq, chromosome conformation capture techniques, etc.).
- B) an introduction to proteomic methodologies and their application to the study of human diseases.
- C) an introduction of the significance but also the challenges of applying metabolomic analysis in neurophysiology research. The students will be presented with the major changes in the way problems in life sciences are now approached in the context of the systems biology and the omic analyses revolution, focusing on brain research and the

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

field of systems neurophysiology. The muti-step metabolomic analysis will be described and its contribution to the reconstruction of an accurate metabolic physiology map for the brain will be discussed. Experimental and computational protocol standardization challenges that need to be addressed for its vast deployment in neurophysiology research and practice will be described. An example of brain metabolomic analysis in a mouse model will be presented.

D) Examples of genetic and biochemical approaches to develop agents interfering with protein aggregation. Many neurodegenerative diseases are associated with protein misfolding and protein self-assembly, which lead to the formation of protein oligomers and/or higher-order aggregates with neurotoxic properties. Thus, understanding these pathogenic processes is of fundamental importance for neurobiology. Furthermore, chemical and biological agents interfering with protein aggregation are much sought-after factors in the quest for effective drugs against these conditions.

Course Overview

The course will cover basic principles of NGS technologies, description of the omic analysis revolution and the consequent fundamental changes in the way problems in life sciences are now approached, mass spectrometry and applications involving differential proteomics, identification of post-translational modifications and analysis of protein complexes as well as of metabolomics. Description of the multi-step experimental and computational analysis process that needs to be carefully designed and standardized for its accurate and vast application in neurophysiology research.

Furthermore, biochemical, biophysical and biological assays, which can be utilized for high-throughput screenings of chemical and biological libraries so as to discover modulators of protein aggregation will be described. Furthermore, the design, development and outcomes of recently developed biotechnological platforms for producing chemical libraries with greatly expanded diversities and for identifying chemical rescuers of pathogenic protein misfolding and aggregation in an ultrahigh-throughput fashion will also be covered.

Skills & Learning Outcomes

The objective will be to familiarize students with

- the principles underlying NGS and the main biomedical applications in which NGS is employed
- 2. the experimental design of proteomic experiments and current challenges in their application to the study of human diseases.
- 3. the holistic perspective of biological system analysis gained from systems and network biology research and shown the complementary role of the various omic analyses in deciphering the complexity of brain function
- 4. metabolomic analysis and it's various experimental and computational components

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

- 5. network reconstruction and how this could contribute to the elucidation of brain metabolic physiology and the reconstruction of the entire brain connectome
- 6. the experimental and computational challenges that need to be considered for accurate application of metabolomics in brain research
- 7. state-of-the-art high-throughput approaches for monitoring neurodegenerationassociated protein aggregation and for identifying chemical and biological inhibitors of these processes.
- 8. recently developed biotechnological approaches for the discovery of chemical rescuers of protein misfolding and aggregation with potentially therapeutic effects against major neurodegenerative diseases.

Titles of the lectures and the names of the lecturers

A/A	Technical courses: Methodological approaches in Neuroscience, Statistics (SPSS, R programming, graphpad).	Lecturer
1	Next Generation Sequencing and its applications in Biomedicine. Genomics	Pantelis Hatzis, Fleming
2	Proteomics	George Panayotou, Fleming
3	Metabolomics	Maria Klappa
4	High throughput assays-amyloid disassembly or prevention of protein aggregation	George Skretas

c) Technical Courses III: Methodological approaches in Neuroscience, Microscopy-neuroimaging

Co-Coordinators

Dimitra Thomaidou, Senior Investigator, Department of Neurobiology, Hellenic Pasteur Institute

Stamatis Pagakis, Senior Research Scientist, Basic Research Center, Foundation for Biomedical Research of the Academy of Athens

Nikolaos Smyrnis, Associate Professor, Psychiatry Department, Medical School, National and Kapodistrian University of Athens

Description

This is an intensive three-week course centered around the study of neuroimaging technologies, that includes lectures, laboratory/hands-on sessions and participation in the acquisition and analysis of neurophysiological/neuroimaging data. All material will focus

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

primarily on learning the different imaging systems and technologies used to study the nervous system, from conventional microscopy to advanced in vivo imaging both in laboratory animals and humans. Attention will be given on learning current digital image processing tools used to analyze/ quantify imaging data. The goal of this intensive course is to provide students with knowledge of novel, state-of-the-art imaging approaches currently used to study nervous system function. Hands on laboratory sessions will allow students to learn through direct experience.

Course Overview

Teaching and some hands-on training of a wide range of imaging tools and technologies currently used to study nervous system morphology, function and dysfunction, both in laboratory animals and humans. The course covers general principles of microscopy (both optical and electron), nuclear and MR imaging, image processing and analysis, as well as advanced neurophysiological and functional neuroimaging approaches linking microscopic analysis with behavior. More specifically, the topics covered include:

- Introduction to human brain function imaging techniques
- Anatomical Neuroimaging
- Live cell dynamics imaging
- FLIM-FRET
- FRAP, in vivo FRAP
- Mechanosensors
- Multiphoton confocal microscopy
- Intravital imaging
- Calcium imaging at whole animal level
- Optogenetics
- Neurophysiology: EEG/MEG
- PET/SPECT Imaging
- fMRI Imaging
- Electron microscopy
- Image Processing (ImageJ, Imaris, Icy)
- Image Data analysis (MATLAB)
- Functional Imaging data preprocessing and analysis (SPM)
- Neurophysiological (EEG/MEG) data preprocessing and analysis (EEGLAB)

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Know the basic principles of microscopy and the imaging systems used to study the nervous system.

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

- 2. Know the latest applications of imaging technology currently used to answer scientific questions related to nervous structure and function and dynamic cellular interactions.
- 3. Get in touch with software used for the processing of digital images/videos.
- 4. Get hands-on training on advanced microscopy and Image Analysis systems currently available in the labs of the participating course instructors.
- 5. Understand the design of experimental procedures used in neurophysiological (EEG/MEG) and functional neuroimaging fMRI) experiments to study human cognition
- 6. Introduction to the preprocessing and analysis software tools used to analyze neurophysiological and functional neuroimaging data used in the labs of participating instructors.

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

Titles of the lectures and the names of the lecturers

	Technical courses: Methodological approaches in	Lecturer
	Neuroscience, Microscopy-neuroimaging	
1	Human Neuroimaging methods.	Nikos Smyrnis
	EEG/MEG, PET/SPECT Imaging	
2	fMRI Imaging	Nikos Smyrnis
3	Light Fluorescence Microscopy: Basic theory	Stamatis Pagakis
	and Modern Techniques. Advanced techniques,	
	FLIM-FRET, FRAP	
4	Image Analysis: Extracting quantitative information	Stamatis Pagakis
	from fluorescence microscopy images. Software	
	presentation: Neurolucida/ImageJ	
5	Advanced imaging applications in the CNS of living	Mimika Thomaidou
	animals: Multiphoton confocal microscopy, Calcium	
	imaging at whole animal level, Optogenetics. Data	
	analysis with Imaris and ICY	
6	In vivo optical animal imaging	Vasso Kostourou
	(fluorescence/luminescence)	
	Advanced imaging techniques- Light Sheet	
	microscopy (SPIM)	
7	Principles of Transmission Electron Microscopy	Ismini Kloukina
	(TEM): Sample Preparation, Immunoelectron	
	Microscopy, Correlative Light and Electron	
	Microscopy, Applications of TEM in Neuroscience	
	Research	

D) Technical coursesIV: Methodological approaches in Neuroscience, Experimental animal models in Neuroscience

Co-Coordinators

Efthimios M.C. Skoulakis, Researcher A', Neurobiology Division BSRC Alexander Fleming **Spiros Georgopoulos**, Researcher B', Biomedical Research Foundation of the Academy of Athens

Description

This is an intensive lecture course focused on popular experimental models used on Neurobiological research. The course aims to explore the main attributes of various experimental systems that makes them suitable to or preferable to address particular types of questions and the depth and generality of answers thus obtained.

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

Course Overview

Interdisciplinary approach to functional neurobiology and its tools including transgenics, RNA interference, particular usefulness and contributions of selected model systems. Total 33 class hours

Each system will be examined/presented along the following axes:

- 1. Usefulness of the model/ contributions
- 2. Manipulations to make transfectants/transgenics
- 3. Models/ examples of Neurochemistry
- 4. Models/ examples of Cognitive and Neurodegenerative diseases.

Models will include

- 1. Neuronal cells in culture
- 2. Caenorhabditis elegans
- 3. Drosophila melanogaster
- 4. Mouse/Rat

Detailed syllabus

1. Cultured neuron models

Advantages, uses, transfections

Models and examples for Neurochemistry, cultured systems as discovery tools

2. C elegans:

Advantages for Neurobiological research, transgenics, RNAi Signaling, aging, disease models

3. Drosophila

Advantages for Neurobiological research, transgenics, tools Neurogenetics, sensory and cognitive models Cognitive and neurodegenerative disease models, pharmacogenetics

4. Mouse

Advantages for Neurobiological research, transgenics Cognitive models and methods, neuropharmacology Neurodegenerative models and applications Rat models, cognitive and neuropharmacology models

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

A/A	Technical courses: Methodological approaches in Neuroscience, Experimental animal models in Neuroscience	Lecturer
1	Tissue culture models	Panos, Politis-Kostas Vekrellis-Spiros Efthimiopoulos
2	Introduction in experimental models in neuroscience	Spiros Georgopoulos
3	Rodents as experimental models in neuroscience	Spiros Georgopoulos
4	Manipulations to make transgenic mice, lab presentation	Spiros Georgopoulos
5	Papers Presentations (Presentations by the students of papers that involve use of experimental models in neuroscience)	Spiros Georgopoulos
6	Approaches to study animal behavior	Antonis Stamatakis/Irini Skaliora/Alexia Polisidis
7	The model of drosophila, usefulness and manipulations to make transgenic drosophila	Efthymios Skoulakis
	The drosophila model for studyign neurodevelopment, learning and memory	Efthymios Skoulakis
	Drosophila Models for studying cognitive and neurodegenerative diseases	Efthymios Skoulakis
	C-elegans as experimental models in neuroscience	Popi Syntihaki

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

Technical courses: Methodological approaches in Neuroscience, Elements of Bioinformatics (big data bases).

Co-Coordinators

Aristotelis Chatziioannou, PhD, Principal Investigator, Metabolic Engineering & Bioinformatics Program, National Hellenic Research Foundation, **Eleftherios Pilalis**, PhD, Chief Technical Officer, e-NIOS Applications PC

Description

This is an intensive two and a half week course focused on computational analysis and robust interpretation of molecular data streams, generated by a broad spectrum of high-throughput experimental technologies, termed as -omics. Overall these technologies revolutionize the landscape of modern biological research, enabling adoption of holistic approaches in the study and modification of biological mechanisms, yet their efficient integration in the discovery cycle entails great challenges, due to their immense complexity. The derivation of the instrumental molecular networks, behind disease emergence and progression, requests the intelligent utilization of powerful, computational strategies, in order to single out of the millions of biological measurements, those pivotal for the disease interrogated. Moreover, it is crucial to prioritize the important cellular events, in order to be able to propose a rational, combinatorial therapeutic approach, targeting these events, with novel combinations of compounds. In this direction, the various pillars of computational analysis that aid efficient and robust integration, analysis and interpretation of high-dimensional, omic data, potentially from multiple layers of dissection (cross-omics) will be examined, as well as the respective experimental technologies they support.

Course Overview

Ultimate goal of this intensive course is that students are gaining familiarization with this broad pool of experimental technologies, under the umbrella of -omics, together with the various sorts of bio-informatic analytical algorithms and workflows, deployed at different stages and for different data-types. In addition, emphasis will be given in the meaningful integration and robust functional interpretation, in terms of the active emergent molecular modules that shape the phenotypic landscape of the biological problem interrogated, as well as the reliable association of molecular with phenotypic markers. The course will review the application of these concepts in the field of epidemiological stratification, pharmacogenomics analysis and personalized medicine.

Topics to be discussed will cover

Next generation sequencing technologies, providing an introduction coupled by an overview of the main Next Generation sequencing methodologies (Gen-Seq, Exome seq, RNA- Seq, ChIP-Seq, etc), from the point of view of the computational analysis (de-novo / Reference Genome-based Assembly, Filtering, Signal Estimation, Differential Expression, Statistical Selection, Variant Calling)

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

- Microarray technologies and their processing (background correction, signal estimation, normalization, filtering and statistical selection)
- Bioinformatic methodologies for multi-layered structural and functional characterization of nucleotide and aminoacid sequences (homology based screening, ORF and gene function prediction, taxonomic and phylogenetic analysis, protein domain analysis, machine learning for functional characterization of proteins, regulatory motif analysis, hot-spot prediction, metagenomic screening)
- Translational, integrative bioinfomatic analysis of omic datasets, which highlight the
 critical biological processes implicated in the biological problem interrogated
 (integrative methodologies, enrichment statistics, ontologies and controlled
 vocabularies, resampling based correction, gene set analysis, pathway prioritization,
 pharmacogenomic knowledgebases)
- Target prioritization and diagnostic stratification discussing the methodologies for the inference of small-sized, highly informative signatures for diagnostic classification, pharmacogenomic analysis, combinatorial treatment (semantic networks, interaction networks, network inference and analysis, derivation of molecular signatures, classification and clustering methodologies, machine learning techiques)

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to define, describe and discern critical functional features of:

- 1. the main Next Generation Sequencing Methodologies and their fundamental computational steps.
- the current state-of-the-art microarray technologies, popular platform configurations for various omic experimental designs, and the requisite algorithmic processing steps.
- 3. the main structural bioinformatic algorithmic tools that are available for the analysis and functional characterization of nucleotide and aminoacid sequences.
- 4. various molecular enrichment, gene set and pathway analysis tools / platforms,
- 5. Network based methodologies for target prioritization, connectivity with drugrelated databases, geometric estimation of complexity (Principal Component Analysis) supervised (machine learning, Linear discriminant analysis, PLS) and unsupervised (clustering) classification of phenotypic categories

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

A/A	Technical courses: Methodological approaches in	Lecturer
	Neuroscience, Elements of Bioinformatics (big data	
	bases).	
1	Quantitative Analysis of -omics experiments (3 hours)	Aristotelis
	discussing the steps of signal estimation, filtering and	Chatziioannou
	statistic selection of omic experiments	
2	Next generation sequencing technologies (3 hours)	Aristotelis
	providing an introduction to the main NG sequencing	Chatziioannou
	methodologies and the foundamentals of their	
	analytical pipelines	
3	From sequences to structures and interactions (3	Eleftherios
	hours) encompassing the exploratory methodologies	Pilalis
	for the hidden structural information within the	
	universe of nucleotide and aminoacid sequences	
4	Translational analysis of omic experiments (3 hours)	Eleftehrios
	discussing the application of a wide spectrum of	Pilalis
	methodologies, which aims to highlight the critical	
	biological processes implicated in the biological problem	
	interrogated	
5	Target identification and diagnostic stratification (3	Aristotelis
	hours) discussing the methodologies for inference of	Chatziioannou
	small-sized, highly informative signatures for diagnostic	/Eleftherios Pilalis
	classification, pharmacogenomic analysis, combinatorial	
	treatment	

National and Kapodistrian University of Athens

Department of Biology

Athens International Master's Programme in Neurosciences

LAB ROTATION

Co-Coordinators

Leonidas Stefanis, Professor of Neurology and Neurobiology **Spiros Efthimiopoulos**, Professor of Neurobiology

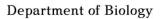
Duration and total hours of laboratory presence

This is a 8 week laboratory practical that corresponds to 12 ECTs and 400 total hours of laboratory presence. The students have the obligation to make 2 paper presentations or 1 paper presentation and one presentation on the scientific projects performed in the lab that accepted them.

The laboratory practical will take place in February-March.

National and Kapodistrian University of Athens

Department of Biology



Athens International Master's Programme in Neurosciences

SECOND SEMESTER

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

NEUROBIOLOGICAL BASIS OF DISEASES OF THE NERVOUS SYSTEM

Co-Coordinators

Leonidas Stefanis, Professor of Neurology and Neurobiology **Spiros Efthimiopoulos**, Professor of Neurobiology

Teaching hours and weekly schedule

This 2nd semester about 3 weeks course that corresponds to 6 ECTs and 53 total hours of teaching including student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This is an intensive three and a half-week course focused on the Genetics, the general processes that operate in several different neurological disorders, the pathology of neurological disorders, their molecular basis, as well as experimental therapeutics. The goal of this intensive course is that students become well versed with the genetic and molecular basis of the disorders of the nervous system.

Course Overview

The course covers general principles that apply to several disorders of the nervous system as well as the description and the pathology and the molecular basis of individual diseases. General principles include:

- Protein misfolding and aggregation,
- protein degradation
- Inflammation
- Neurotoxic and neurotrophic pathways

Examples of the diseases of the nervous system that will be covered include:

- Alzheimer's disease
- Parkinson's disease
- Motor Neuron Disease
- Schizophrenia
- Depression
- Triple repeat disorders
- Epilepsy
- Addiction
- Nervous System Cancers
- Brain and Spinal Cord injury

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to:

- Understand the common mechanisms involved in various diseases of the nervous system
- 2. Understand the genetics of neurological diseases
- 3. Understand and describe the molecular pathways that operate in specific disorders of the nervous system

A/A	Neurobiological Basis of Diseases of the Nervous	Lecturer
	System:	
1	Neurodegenerative diseases as proteinopathies	Kostas Vekrellis
2	Genetics of Neurodegenerative diseases	John Hardy
3	Neurotoxic and neurotrophic mechanisms	Nikolaos Robakis-Spiros
		Efthimiopoulos
4	Protein degradation in neurodegenerative diseases	Leonidas Stefanis-Maria
		Xylouri
5	Inflammation	Spiros Georgopoulos
6	Disease Biomarkers	Elisavet Kapaki
7	Molecular and Cellular Biology of Alzheimer's	Stefan F. Lichtenthaler-
	Disease	Spiros Efthimiopoulos
8	Molecular Basis of taupathies	Efthimios Skoulakis
9	Cognitive Functions and behavior in dementias	Sokratis Papageorgiou
10	Molecular and Cellular Biology of Parkinsons's	Leonidas Stefanis
	Disease	
11	Life Style and nurodegeneration	Nikos Scarmeas
12	Motor Neuron Disease	Laskaro Zagoreou
13	Molecular and Genetic Basis of Schizophrenia	Nikos Stefanis
14	Biology of Depression	Christina Dalla, Nikolaos
		Kokras
15	Cognitive deficits in Schizophrenia and depression	Nikos Smyrnis
16	Trple repeat disorders	George Koutsis
17	Epilepsy	Anastasios Bonakis
18	Mechanisms of Addiction	Christina Dalla, Styliani
		Vlachou
19	Nervous System Cancers	Mimika Mangoura
20	Brain and Spinal Cord injury	Rebecca Matsa

National and Kapodistrian University of Athens

Department of Biology

Athens International Master's Programme in Neurosciences

NEUROPHARMACOLOGY

Co-Coordinators

Christina Dalla, Assistant Professor of Psychopharmacology, Dep. of Pharmacology, Medical School, NKUA

Katerina Antoniou, Associate Professor of Pharmacology, Medical School, University of Ioannina

Teaching hours and weekly schedule

This 2nd semester about 3 weeks elective course that corresponds to 6 ECTs and 53 total hours of teaching including student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This is an intensive three-week course focused on neuropsychopharmacology that includes lectures from pharmacologists, clinicians, neuroscientists and other specialties. The course will also accommodate student's presentations on specific neuropsychopharmacological issues, as well as written-exercises on pharmacological experimental design.

The lectures will focus on basic principles of pharmacology (such as pharmacokinetics and pharmacodynamics), information on drug design and discovery, treatment of neuropsychiatric disorders, as well as drug-induced changes in functioning of the nervous system. Additionally, the lecturers will give an overview of the techniques and models used for the study of neuropharmacology, as well as the basics of CNS clinical research, including regulations and statistical principles.

The goal is that students will become accustomed with neuropsychiatric treatment, modelling and research. Ultimately, they will be able to pose relevant neuropsychopharmacological questions and contribute to the design of preclinical and clinical studies.

Course Overview

The course will include lectures on drug design/discovery, as well as principles of neuropsychopharmacology preclinical and clinical studies. Students will have the opportunity to present specific neuropsychopharmacological issues, as well as to perform written-exercises on pharmacological experimental design and analysis.

Most importantly, an interactive approach, with the use of poll-machines, will be used for the teaching of the neuropsychopharmacological basis, study and mechanism of action of:

- Antipsychotics
- Antidepressant drugs and mood stabilizers
- Antiepileptics
- Cognitive enhancers
- Drugs of abuse
- Antiparkinsonian drugs and drugs for the treatment of neurodegenerative diseases
- Neuroimaging ligands

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

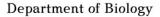
Skills & Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. Understand basic pharmacological principles
- 2. Know about most classes of neuropsychopharmacology drugs
- 3. Know about adverse effects, drug interactions and genomics of CNS-acting drugs
- 4. Identify new targets for CNS treatments and pose relevant questions
- 5. Understand the methods used in preclinical and clinical neuropsychopharmacology
- 6. Contribute to the design of preclinical and clinical neuropsychopharmacology studies

A/A	Neuropharmacology	Lecturer
1	Basic principles: introduction/history	Christina Dalla, Katerina
	pharmacodynamics/pharmacokinetics	Antoniou
2	Targets of drug action (neurotransmitters/receptors,	Achilleas Gravanis
	monoamines, aminoacids, neuropeptides,	
	acetylocholine, neurotrophins e.t.c.)	
3	Drug design/discovery	Dimitrios Vassilatis,
		Ioannis
		Charalampopoulos
4	Neurobiology, Treatment and modelling of CNS	Katerina Antoniou,
	disorders: Introduction	Christina Dalla
6	Antipsychotics	Nikos Kokras, Nikos
		Pitsikas
7	Mood disorders (antidepressants and mood	Christina Dalla, Nikos
	stabilizers)	Kokras
8	Anxiolytics and sleep inducers	Christina Dalla, Nikos
		Kokras
9	Antiepileptic drugs and cognitive enhancers	Costas
		Papatheodoropoulos,
		Nikos Kokras
10	Treatment of Neurodegenerative disorders and new	Spiros. Efthimiopoulos,
	targets	Leonidas. Stefanis,
		Kostas Killidireas,
		Ioannis Sotiropoulos
11	Neurodevelopmental disorders (ADHD, autism etc)	George Chrousos, Neny
	and treatment	Pervanidou
12	Drugs of abuse/ addiction: neurobiology, treatment,	Katerina Antoniou,
	modelling	George Panagis, Foteini

National and Kapodistrian University of Athens


Athens International Master's Programme in Neurosciences

Department of Biology

	CNS Stimulants, CNS Depressants, Nicotine,	Delli, Thomas
	Psychedelics, Alcohol, Cannabinoids	Paparrigopoulos, Alexia
		Pollisidis, Styliani
		Vlachou
13	Opioid receptors and new targets	Iro Georgoussi
13	Neuroimaging ligands	Minas Papadopoulos/
		Ioannis Pirmettis
14	Neuropsycho-pharmacogenomics	Dimitris Dikeos
15	Basics in CNS clinical research (design, analysis and	Giota Touloumi, Tina
	regulation/legislation), Pharmacoepidemiology	Antachopoulou

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

BEHAVIORAL NEUROSCIENCE IN ANIMALS

Co-Coordinators

Efthimios Skoulakis, Researcher A, BSRC Alexander Fleming **Antonios Stamatakis**, Associate Professor of Biology-Biology of Behaviour

Teaching hours and weekly schedule

This 2nd semester about 3 weeks course that corresponds to 6 ECTs and 53 total hours of teaching including student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This course will explore the general themes and important questions in the field of animal behavior including the underlying molecular and cellular mechanisms. Topics will include the underlying genetics of behavior, behavioral development, various forms of learning, decision making, social interaction, sexual and parental behavior. The goal of this course to familiarize students with animal models emulating emotional and cognitive functions of humans.

Course Overview

- Attention & Habituation
- Learning & Memory I: Aplysia-molecular concepts
- Learning & Memory II: Mammals –Hippocampus
- Learning & Memory III: LTP & place cells
- Learning & Memory IV: Adult neurogenesis
- Learning & Memory V: Drosophila
- Learning & Memory VI: Zebra fish
- Emotions and the limbic system
- Motivation and the reward system of the brain
- · Prefrontal cortex: Decision making, working memory and monitoring of behavior
- Social Interaction & aggression I-Non mammalian species 12. Social Interaction & aggression II-Mammals
- Sexual behavior
- Maternal/Parental behavior
- Effects of early life experiences on emotion and cognition

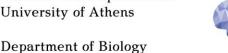
Skills & Learning Outcomes

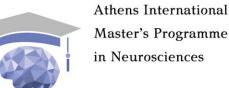
At the end of the course the students will be acquainted with the scientific research on animal behavior and will understand the complexity of the mechanisms controlling behavior. Goals will be to:

1. Gain knowledge of common biological terms and principles used in the study of animal behaviour

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences


Department of Biology


- 2. Comprehend behavioral terms and principles and demonstrate this comprehension via interpretation of material in lecture
- 3. Apply studied behavioral terms and principles to new situations
- 4. Analyze behavioral principles based on the ability to distinguish between facts and inferences
- 5. Synthesize general principles from different sub-fields of behavior to solve problems using creative thinking
- 6. Evaluate behavioral principles in a study of the behavioral literature

Behavioral Neuroscience in Animals:	Lecturer
Attention & Habituation	Efthimios Skoulakis
Learning & Memory I: Aplysia-molecular concepts	Efthimios Skoulakis
Learning & Memory II: Drosophila-1	Efthimios Skoulakis
Learning & Memory III: Drosophila-2	Efthimios Skoulakis
Learning & Memory IV: Mammals –Hippocampus	Irini Skaliora
Learning & Memory V: Adult neurogenesis	Christina Dalla
Emotions and the limbic system	Irini Skaliora
Motivation and the reward system of the brain	Antonis Stamatakis
Prefrontal cortex: Decision making, working memory	Antonis Stamatakis
and monitoring of behavior	
Social Interaction & aggression I-Non mammalian	Efthimios Skoulakis
species	
Social Interaction & aggression II-Mammals	Antonis Stamatakis
Sexual behavior	Antonis Stamatakis
Maternal/Parental behavior	Antonis Stamatakis
Sleep	Anastasios Bonakis
Student Mini-Symposium	Efthimios Skoulakis &
	Antonis Stamatakis

National and Kapodistrian University of Athens

Master's Programme in Neurosciences

Titles of the lectures and the names of the lecturers

NEUROIMMUNOLOGY

Co-Coordinators

Constantinos Kilintireas, MD, Professor of Neurology Lesley Probert, PhD, Research Director, Department of Immunology

Teaching hours and weekly schedule

This a 2 weeks course that corresponds to 3 ECTs and 27 total hours of student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This is an intensive three-week course focused on neuroimmunology that includes lectures and student presentations. All material will focus on learning the interactions between the immune and nervous systems and their relevance to the pathology of diseases, particularly those of the central nervous system (CNS). The course will teach basic principles of immune system function, and evidence for its involvement in nervous system function and dysfunction from the study of experimental disease models and clinical data from patients with autoimmune and neuroinflammatory diseases. The goal is that students become conversant with the extent of immune system involvement in nervous system under physiological and pathophysiological conditions. The course will be interactive, with students actively participating through their own research into, and presentations of, currently developing areas in this field.

Course Overview

The course will combine basic research and clinical experience in the field of neuroimmunology to study the involvement of the innate and adaptive immune systems in the CNS under physiological and pathophysiological conditions. The course covers the general principles of peripheral and CNS immune systems, neuroimmune interactions in health and disease, animal models for the study of autoimmune and neuroinflammatory diseases of the CNS, human neuroimmune diseases and clinical experience with current immunotherapeutics for their treatment.

- Basic principles of the immune system
- Cell migration into the CNS and antigen presentation
- CNS immune system and functions in physiology and disease
- Neurodegeneration and neurorepair
- Animal models- critical appraisal as models for human neuroinflammatory diseases
- Human neuroimmune diseases
- Immunotherapeutic approaches for neurodegenerative diseases

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

Skills & Learning Outcomes

Upon successful completion of this course, students will:

- 1. Understand the structure and functions of the peripheral immune system with relevance to neuroimmune interactions.
- 2. Understand the components and functions of the endogenous CNS immune system.
- 3. Be able to critically analyse results from experimental models and assess their relevance for human disease.
- 4. Be conversant with the extent of immune involvement in neurological disease.
- 5. Be able to appreciate the benefits and limits of current immunotherapeutics, and understand open needs for new therapies, for the treatment of human diseases.

A/A	Neuroimmunology	Lecturer
	Basic principles of the immune system	
1	Innate immune system with relevance to nervous	Ourania Tsitsilonis
	systems: Neutrophils, NK cells, Macrophages,	
	Relevance for diseases of PNS and CNS (e.g. PMS, AD,	
	ALS, PD, Schizophrenia)	
2	Adaptive immune system II: B cells, T cell-	Harry Alexopoulos
	dependent/ T cell independent responses, B regs,	
	Relevance for diseases of PNS and CNS (e.g. autoAbs	
	to AChR, MOG, NMDAR, AMPAR, GABAR), IgG4-	
	related disease (IgG4-RD)	
3	Adaptive immune system I: T cells, Antigen	Ourania Tsitsilonis
	presentation, APC, dendritic cells, CNS Ags (e.g. HSPs,	
	MOG, P0, DM22), T cell differentiation,	
	Autoantigens, Central and peripheral tolerance,	
	Relevance for diseases of PNS and CNS	
	Regulation of the immune system	Ourania Tsitsilonis
	Cell migration into the CNS and antigen	
	presentation:	
4	Basics: Basic principles of BBB, cell migration into	Trevor Owens
	CNS, Cellular activation, cytokines, chemokines	
5	T cell interactions with the BBB, Live imaging of	Naoto Kawakami
	cellular interactions and migration into the CNS	
6	Clinical aspects, BBB in neurological diseases, MRI	Kostas Voumvourakis
	imaging and interpretation, Pharmaceuticals that	
	cross BBB in disease	
7	CNS immune system	Spiros Georgopoulos

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

8	Microglia: TLR and infections, IL-1β, and	Vasso Kyrargyri
	inflammasome, TNF	
8	Neurodegeneration and neurorepair/remyelination-	Luca Muzio from San
	Mediators of neurodegeneration (calcium, apoptosis,	Raffael
	necrosis, necroptosis)	
9	CNS repair mechanisms: M1/M2 inflammation,	Luca Muzio from San
	alternative activation of MG, remyelination, Neural	Raffael-Maria Karamita
	stem cells in CNS physiology and repair	
	Animal models- critical appraisal as models for	
	human neuroinflammatory diseases	
10	MS models I: EAE- model for the autoimmune	David Baker
	components of MS (passive transfer models for e.g.	
	NMDAR encephalitis, Devics, Stiff Person Syndrome)	
11	MS models II: Cuprizone-induced	Domna Karagogeos
	demyelination/remyelination	
12	Alzheimer's disease models: APP and ApoE4	Spiros Georgopoulos
	transgenics and PSNKO, scavenger	
	receptors/microglia, success of anti TNF therapy	
	Human neuroimmune diseases	
13	T cell-mediated diseases: a) multiple sclerosis,	Nikos Grigoriadis
	paraneoplastic- synaptic autoimmune encephalitides	
	(NMDAR, AMPAR, GABAR etc), CIDP – chronic	
	inflammatory demyelinating neuropathy	
14	B cell-mediated diseases- T cell-dependent/ T cell-	Costas Kilindireas
	independent: a) Paraneoplastic, Autoimmune	
	encephalitis , Myasthenia gravis, NMO -	
	neuromyelitis optica	
15	Autoimmune encephalomyelitis	Harry Alexopoulos
	Immunotherapeutic approaches for neurodegenerative	e disease
16	Immunosuppression in neurological diseases (e.g. for	Mary Anagnostouli
	PMS, aggressive RRMS, Peripheral Neuropathy,	
	Myasthenia Gravis), Mitoxanthrone, Cyclosporine,	
	CellSept, Copaxone)	
17	Cell depletion therapies, Rituximab, Occrelizumab,	Maria Evangelopoulou
	Alentuzumab, PLX, plasmaphoresis for AchR (MG),	
	Aquaporin 4 (NMO), MOG (MS?), NMDA	
	(autoimmune encephalitis). Comment, why not	
	effective with anti-GM1 Abs for MMA, Cell death	
	(high dose Rituximab?	

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

18	Anti-migratory therapies, (for MS, peripheral	Efthimios Dardiotis
10	neuropathy, CIDP), Natalizumab (Tysabri),	Ereminos Bararotis
	Fingolimod (Gilenya),	
19	Immunomodulatory therapies, Type I interferons –	Efthimios Dardiotis
	modes of action, IVIg	
20	New pipeline immunotherapeutic approaches,	
	Antigen-specific T cell tolerance (DC targeting, DNA	
	or TCR vaccination, etc)	

National and Kapodistrian University of Athens

Department of Biology

Athens International Master's Programme in Neurosciences

NEUROENDOCRINOLOGY

Co-Coordinators

Fotini Stylianopoulou, Professor Emeritus of Biology **Efthymia Kitraki**, Professor of Biology

Teaching hours and weekly schedule

This 2nd semester about 3 weeks course that corresponds to 6 ECTs and 53 total hours of teaching including student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This is an intensive 2-week course focused on Neuroendocrinology that includes lectures and students' presentations. All material will focus primarily on the neuroendocrine axes that control reproduction, metabolism, stress and pain responses , water & electrolyte balance and sleep-awakening rhythms. The impact of genetic and epigenetic factors on axes' function and their interactions will be also addressed. The course aims to provide a comprehensive canvas on the mechanisms of hormonal control of the nervous system function in health and disease. Students' presentations on selected topics will enhance understanding through active learning

Course Overview

The course covers the general principles of hormone actions in the central nervous system by providing the underlying mechanisms and the different levels of regulation. More specifically, lectures and students' presentations will enable to:

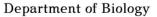
- Understand the central and peripheral centres participating in the neuroendocrine control
- Understand the positive and negative feedback loops participating in the neuroendocrine axes' regulation
- Understand the molecular mechanisms of neuroendocrine control
- Understand the interactions among different neuroendocrine axes
- Understand the role of genetic and epigenetic factors in the modification of neuroendocrine function
- Understand how deregulation of neuroendocrine function is linked to disease

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. Describe the function of the major neuroendocrine axes in mammals
- 2. Describe the possible interactions among the different neuroendocrine axes
- 3. Describe the genetic and epigenetic impact on axes' function
- 4. Relate the neuroendocrine axes' dysfunction with health outcomes

National and Kapodistrian University of Athens


Athens International Master's Programme in Neurosciences

Department of Biology

A/A	Neuroendocrinology	Lecturer
1	Basic principles and overview	Fotini Stylianopoulou
2	The hypothalamic- pituitary- adrenal axis	Efthymia Kitraki
3	The hypothalamic-pituitary-gonadal axis and	George Mastorakos
	reproduction regulation	
4	The hypothalamic- pituitary- thyroid axis and growth	Melpomeni Peppa
	hormone	
5	Neuroendocrine control of food intake	Constantinos Tsigos
6	Interactions of neuroendocrine axes	Fotini Stylianopoulou
7	Neuroendocrine control of pain	Antonis Stamatakis
8	Neuroendocrine control of water and ion balance	Maria
		Panagiotakopoulou
9	Neuroendocrine control of sleep and circadian	Anastasios Bonakis
	rhythmes	
10	Sexual differentiation of the brain	Fotini Stylianopoulou
11	Polymorphisms in neuroendocrine responses	Efthymia Kitraki
12	Epigenetics in neuroendocrine functions	Fotini Stylianopoulou
13	Neuroendocrine disorders	George Chrousos

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

ELECTROPHYSIOLOGY

Co-Coordinators

Skaliora Irene, Research Assistant Professor of Neuroscience **Consoulas Christos**, Associate Professor of Physiology

Teaching hours and weekly schedule

This 2nd semester about 3 weeks course that corresponds to 6 ECTs and 53 total hours of teaching including student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description:

This two-week course will focus on cellular and molecular neuroscience. It will cover the mechanisms that operate to regulate neuronal excitability, dendritic and synaptic function; plasticity and neural circuits. This is an intensive course focused on cellular neurophysiology. The main aim of the course is to understand the principles of signal generation, modulation and transmission, both at the cell and circuit level. The goal of this course is to enable

Learning Resource

Kandel ER, Schwartz JH, Jessell, TM, et al. Principles of Neural Science 5th Edition (2012). McGraw-Hill NY. ISBN 0071390111

Course Overview

- Introduction lecture
- Ion channels
- Membrane potential, Nernst Equation, Goldman Equation
- Electrotonic potential
- Passive membrane properties
- Action potential
- Na+, K+, and Ca++ channels and currents
- Mechanisms of pre-synaptic release
- Synaptic transmission ligand gated and G-protein synaptic transmission
- Neuromuscular Junction
- CNS synaptic transmission 1- excitation Glutamatergic
- CNS synaptic transmission 2- inhibition GABAergic and Glycinergic
- CNS synaptic transmission 3- synaptic integration.
- Neural Circuits: methods of recording and analysis
- Modulation of Neural Circuits

National and Kapodistrian University of Athens


Athens International Master's Programme in Neurosciences

Department of Biology

A/A	Cellular neurophysiology	Lecturer
1	Basis of excitability, resting potential	Irini Skaliora
2	Passive and active properties (Action potential, τ , cable theory)	Christos Consoulas
3	Synapses (NMJ and central) signal integration and processing	Christos Consoulas
4	Synaptic modulation, neurotransmitter and receptors	Cornelia Poulopoulou
5	Recording techniques	Elias Koutsoukos
6	Dendritic recordings Ca imaging	Carsten Duch
7	Network analysis	Irini Skaliora

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

COMPUTATIONAL NEUROSCIENCE

Co-Coordinators

Efstratios K. Kosmidis, Assistant Professor of Neurophysiology **Vassilis Cutsuridis**, Affiliated Researcher, FORTH, Senior Lecturer, School of Computer Science, University of Lincoln, UK

Teaching hours and weekly schedule

This 2nd semester about 3 weeks course that corresponds to 6 ECTs and 53 total hours of teaching including student presentations.

The weekly schedule includes about 4 hours of teaching per day every afternoon.

Description

This course provides an introduction to basic computational methods for understanding what nervous systems do and for determining how they function. We will explore the computational principles governing neural function from the single neuron to the neural network level. Specific topics will cover synaptic plasticity, learning and memory in the brain. We will make use of C++/Matlab/NEURON demonstrations and exercises to gain a deeper understanding of concepts and methods introduced in the course. The course is aimed to students of all ages eager to learn how the brain processes information.

Course Overview

Computational neuroscience is the intersection of neurophysiology, neuroanatomy, mathematical modeling and computer science. Its primary target is to describe how the brain "computes" by simplifying neuronal biology to a set of equations. As most branches of Science, it contains elements of Philosophy and Art. Emphasis will be given on mathematical descriptions and computational techniques used to study and understand neurons and network of neurons. Weekly assignments will allow students to learn through direct experience. The course will provide a glimpse of this exciting field aiming to motivate the young mind by covering the following topics:

- Mathematical modeling in neurophysiology. An introduction.
- Classical, membrane potential theory
- Electrical analogue of the cell membrane The Lapique model (Leaky Integrate and Fire)
- Action potential theory. The Hodgkin Huxley model
- Cable theory, multi-compartmental single neuron model
- Models of synaptic transmission (AMPA, NMDA, GABAA, GABAB)
- Models of synaptic plasticity (LTP/LTD, STDP, Hebbian, Delta rule, backpropagation, etc)
- Models of neural networks (feedforward, feedback, competitive, etc)
- Computational tools (NEURON and MATLAB)

National and Kapodistrian University of Athens

Athens International Master's Programme in Neurosciences

Department of Biology

Skills & Learning Outcomes

Upon successful completion of this course, students will be able to:

- Understand and appreciate the integral role of computational techniques and concepts in neuroscience. Study and critique review papers relating the use of computational techniques to the broader development of theories and experimental methods in neuroscience.
- 2. Understand basic concepts for ion channel and single cell modeling, possibly including:
 - a. I-V curves, the Hodgkin-Huxley model of action potential generation, and simple kinetic models of ion channels, integrate-and-fire approximation
 - Mathematical representations of conductances, currents, and their relationship to dynamic changes in nerve cell behavior
- Use these models and associated methods to predict qualitative functional outcomes
 or quantitative state changes when varying parameters or changing structural
 properties of the models.
- 4. Use one or more software tool that facilitates the calculation of such predictions.

A/A	Computational Neuroscience	Lecturer
	Lecture title	
1	Mathematical modeling in neurophysiology. An	Efstratios Kosmidis
	introduction.	
2	Classical, membrane potential theory	Efstratios Kosmidis
3	Electrical analogue of the cell membrane – The	Efstratios Kosmidis
	Lapique model (Leaky Integrate and Fire)	
4	Action potential theory. The Hodgkin – Huxley model	Efstratios Kosmidis
5	Dendritic functional properties. Multi-	Panagiota. Poirazi
	compartmental modeling	
6	Kinetic models of synaptic transmission	Vassilis Cutsuridis
7	Computational tools	Vassilis Cutsuridis
8	Synaptic plasticity, learning and memory modeling	Vassilis Cutsuridis
	approaches	
9	Network models	Vassilis Cutsuridis

National and Kapodistrian University of Athens

Department of Biology

Athens International Master's Programme in Neurosciences

LABORATORY ROTATION

Co-Coordinators

Leonidas Stefanis, Professor of Neurology and Neurobiology **Spiros Efthimiopoulos**, Professor of Neurobiology

Duration and total hours of laboratory presence

This is an 8 week laboratory practical that corresponds to 12 ECTs and 400 total hours of laboratory presence. The students have the obligation to make 2 paper presentations or 1 paper presentation and one presentation on the scientific projects performed in the lab that accepted them.

The laboratory practical will take place in June-July

RESEARCH THESIS PROJECT

This is an 11 month research project that corresponds in 60 ECTs